3.5 Rational Functions

* Rational Functions

Rational Functions: quotients of polynomial functions

$$
f(x)=\frac{p(x)}{q(x)}
$$

where p and q are polynomial functions and $q(x) \neq 0$.
Domain of a Rational Function: the set of all real numbers except the x-values that make the denominator zero.

To Find the Domain of a Rational Function: (Sec. 2.8)

1) Set the denominator $\boldsymbol{=} \mathbf{0}$ and solve for \boldsymbol{x}.
2) Exclude the resulting real values of x from the domain.

Ex. Find the domain of each rational function. Write the domain in interval notation.
(a) $f(x)=\frac{-3 x+7}{5 x-2}$
(b) $F(x)=\frac{x+2}{x^{2}+4}$
(c) $R(x)=\frac{x^{2}}{x^{2}+x-6}$
(d) $H(x)=\frac{x^{2}-1}{x+1}$

Vertical Asymptotes: The line $x=a$ is a vertical asymptote of the graph of a function f if $f(x)$ increases or decreases without bound as x approaches a. Thus, as x approaches a from either the left or the right. (There can be more than one vertical asymptote or none at all. A graph can never intersect a vertical asymptote.)

To Find the Vertical Asymptotes $(x=a)$:

1) Simplify the rational function to its lowest term.
 If $f(x)=\frac{p(x)}{q(x)}$ is a rational function and if p and q have no common factors, then the rational function f is said to be in lowest term.
2) Set the denominator $=\mathbf{0}$ and solve for x.

Ex. Find the vertical asymptotes, if any, of the graph of each rational function.
(a) $f(x)=\frac{-3 x+7}{5 x-2}$
(b) $F(x)=\frac{x+2}{x^{2}+4}$
(c) $R(x)=\frac{x^{2}}{x^{2}+x-6}$
(d) $H(x)=\frac{x^{2}-1}{x+1}$

Horizontal Asymptote: The line $y=b$ is a horizontal asymptote of the graph of a function f if $f(x)$ approaches b as x increases or decreases without bound. (It can have at most one horizontal asymptote or none at all. A graph may cross its horizontal asymptote.)

To Find the Horizontal Asymptotes $(y=b)$:

Compare the highest degree in the numerator (\boldsymbol{n}) to the highest degree in the denominator (\boldsymbol{m}).
1.) $n<m$: The horizontal asymptote is $y=0$ (the x-axis).

Tip: BOBO BOTN EATS DC
2.) $n=m$: The horizontal asymptote is $y=\frac{a}{b}$ (\boldsymbol{a} : the leading coefficient of the numerator; \boldsymbol{b} : the leading coefficient of the denominator).
3.) $n>m$: There is no horizontal asymptote.

Ex. i) Find the horizontal asymptote, if any, of the graph of each rational function.
ii) If the graph of the function has a horizontal asymptote, determine the point where the graph crosses the horizontal asymptote.
(a) $f(x)=\frac{-3 x+7}{5 x-2}$
(b) $F(x)=\frac{x+2}{x^{2}+4}$
(c) $R(x)=\frac{x^{2}}{x^{2}+x-6}$
(d) $H(x)=\frac{x^{2}-1}{x+1}$

Ex. Use the graph of $f(x)=\frac{1}{x^{2}}$ to graph $T(x)=\frac{2}{(x+2)^{2}}+1$. State the vertical asymptote(s) and horizontal asymptote of each function.
$f(x)=\frac{1}{x^{2}}$

VA:
HA: \qquad
$T(x)=\frac{2}{(x+2)^{2}}+1$

VA: \qquad
HA: \qquad

* Slant (Oblique) Asymptotes of Rational Functions

Slant (Oblique) Asymptote: If the degree of the numerator is one more than the degree of the denominator $(\boldsymbol{n}=\boldsymbol{m}+\mathbf{1})$, then the graph has a slant asymptote, $y=m x+b$. The equation of the slant asymptote can be found by division.

$$
f(x)=\frac{p(x)}{q(x)}=m x+b+\frac{\text { remainder }}{q(x)}
$$

Ex. Find the slant asymptote of the graph of each rational function.
(a) $f(x)=\frac{x^{2}-4}{x}$
(b) $f(x)=\frac{-2 x^{2}-3 x+7}{x+3}$
(c) $f(x)=\frac{4 x^{3}-2 x^{2}+7 x-3}{2 x^{2}+4 x+3}$

